Tesla model 3 monitoring with the "scan my tesla" application

Bart Johnson

Abstract

Experiments using the [scan my tesla](https://www.scanmytesla.com/) application are reported here along with basic information about the car and energy efficiency. These experiments were done with my Tesla Model 3 long-range/dual-motor purchased in 2021.

Bart Johnson bart.johnson.tesla at gmail.com 19 March 2023

Introduction

I had the good fortune to have 0.6 Bitcoin left over from a purchase in 2013. I sold them in May 2021. That paid for half of my 2021 red Tesla Model 3 with the long-range/dual-motor option. This write-up is primarily about my experiments with the [scan my tesla](https://www.scanmytesla.com/) application to monitor the car's performance. I am also reporting other information about the design of the car and energy efficiency that I have gathered for my own education.

The car is fun to drive. It is very nimble with its low center of gravity from the heavy battery pack mounted in the floor. The acceleration is phenomenal, peaking out at almost 0.7 g. I admire the clean physical design. However, that aesthetic comes with a cost. The car would be virtually undrivable without voice recognition and control, even for such simple actions as turning on the windshield wipers. I amuse people

by commanding "open the glove box" since there is no hand latch. I understand that a hand latch lever would spoil the design. I have yet to figure out how to open the box through the touchscreen display. That is a problem because the voice control is dependent on the cell-phone network. One day I may get stranded in a remote area without cellular service. Another issue is that Tesla can abruptly change the control layout through a software download. That is a safety issue if you need to hunt through unfamiliar submenus at highway speeds.

Battery pack

The battery specifications in the table are for the 2021 longrange Model 3. The battery pack is made of 4416 type 2170 lithium-ion rechargeable battery cells. The 2170, as the model number suggests, is 21mm in diameter and 70 mm in length. The layout of the cells is shown in Fig. [2.](#page-1-0)

Each group of 46 cells is connected in parallel. The voltage of each group can be read with the [scan my tesla](https://www.scanmytesla.com/) application and registers around 4 volts, depending on the state of charge. 96 groups are connected in series to create a 384-volt composite battery. There are two such composite batteries, one on the left side of the car and one on the right.

The battery weight is considerable and is housed in the

Figure 2. Battery layout in the Tesla Model 3 long range^{[\[1\]](#page-12-0)}.

floor of the car giving it a low center of gravity. As a result, the car corners well and has good traction. The 82 kWh battery allows 358 miles of range. The top speed is 145 mph.

Figure 3. Front and rear motors in the Tesla Model 3 long range[\[2\]](#page-12-1).

The rear motor is an AC permanent magnet synchronous motor, liquid-cooled, with variable frequency drive. The front motor is an AC induction motor, liquid-cooled, with variable frequency drive. The permanent magnet motor is especially efficient [\[3\]](#page-12-2) and was seen to be used for most of the propulsion and regenerative breaking in our tests.

"scan my tesla" application

The [scan my tesla](https://www.scanmytesla.com/) application was written by Norwegian developer, Amund Børsand. The results presented here were taken with Android version 1.9.12. It logs 247 parameters at a rate of over 1000 data packets per second. The data were saved as a csv file to the "Download" directory of my cell phone. Not every parameter is logged in every packet. However, the application can supply real-time data on the state of charge, power usage, and torque, to name a few. Quickly changing parameters are reported more frequently. A full list of the parameters is presented in Fig. [7.](#page-3-0)

Figure [4](#page-2-0) shows that the packet rates are very high with a spacing of less than 21 ms for 99% of the packets. Since the data of interest does not exist on every packet, the actual data rates are less. However, the data samples are still dense with 99% of the torque data coming within 74 ms and 99% of the speed values within 103 ms.

The physical installation requires a cable to tap into the CAN bus and an OBD-II adapter that has a Bluetooth interface. The products I used are shown in Fig. [5](#page-2-1) and the physical installation in my car is shown in Fig. [6.](#page-2-2)

OBDLink MX+ OBD2 Bluetooth Scanner for iPhone, Android, and Windows

Figure 5. CAN bus cable and the OBD-II adapter with Bluetooth interface to my Android cellphone.

Figure 4. Data rate histogram showing delay times between information packet types.

Figure 6. Installation behind the center console of my car.

Figure 7. List of parameters reported by the [scan my tesla](https://www.scanmytesla.com/) application.

Performance on the highway

The drag on the car determines most of the energy usage at highway speeds. The two components of drag are rolling resistance and air resistance. The rolling resistance power loss is

$$
P_{rr} = C_{rr} m g v \tag{1}
$$

where C_{rr} is the rolling resistance coefficient, m is the mass of the car and passengers, *g* the acceleration of gravity, and *v* the velocity. The rolling resistance is due to the energy loss in compressing and releasing the rubber in the tires. For low rolling resistance, the tires should be inflated to a relatively high 42 PSI.

The air resistance power loss is

$$
P_{ar} = \frac{1}{2} \rho C_d A v^3 \tag{2}
$$

where ρ is the density of air, ν the velocity, A the frontal area of the car, and C_d is the drag coefficient. The Model 3 has a very low C_d for a production car^{[\[4\]](#page-12-4)}. The aero wheel covers on my car can increase range by several percent [\[5\]](#page-12-5) by reducing air resistance.

Both the rolling and air resistance powers are plotted in Fig. [8](#page-4-0) as a function of speed. At 80 mph you would expect to achieve 3.6 miles/kWh. That would be a maximum figure that neglects motor efficiency, lights and electronics, heating and air conditioning.

[scan my tesla](https://www.scanmytesla.com/) data for a trip on Interstate 495 in Massachusetts under adaptive cruise control is presented in Fig. [9.](#page-5-0) The car held to 80 mph very well except when the adaptive cruise control slowed for a car ahead. The accelerator depression was zero while on cruise control. The road was fairly straight as evidenced by the low steering wheel angles. The car was propelled mostly by the rear permanent magnet motor. The motor power and torque responded to the slight hills on the route, throttling back to almost zero on one of the steeper downhill segments. Most of the battery power goes to the motors. The bottom plot shows the instantaneous "mileage" that averaged out to 3.4 miles/kWh.

Figure 9. Data logged while traveling under adaptive cruise control on Interstate 495 in Massachusetts.

Performance during high acceleration

The data plotted in Fig. [11](#page-6-0) show a right turn off Concord Road to a downhill entrance ramp onto Route 3. The accelerator was "floored" for several seconds. The peak acceleration was about 0.7 g. Theoretically, [scan my tesla](https://www.scanmytesla.com/) is supposed to log brake pedal depression, however, there was no change in that data stream. The friction brake was applied briefly around 60 seconds. The motor torque and power curves show interesting choreography between the front and rear motors. The rear motor is a permanent magnet motor and is more efficient. It is the primary motor used for most of the acceleration and regenerative braking. The front motor acts as a significant, but secondary, assist during high acceleration. The maximum drive power is 300 kW occurring when the accelerator was depressed to the floor. Shortly thereafter, regenerative braking of 50 kW was observed when the accelerator was returned to zero depression.

Figure 10. Map of Concord Road entrance to the freeway.

Figure 11. High acceleration data on the entrance to the freeway.

Figure [12](#page-7-0) compares acceleration computed from

$$
\frac{a}{g} = \frac{1}{g} \frac{dv}{dt} \tag{3}
$$

with

$$
\frac{a}{g} = \frac{\tau R}{m r g}.\tag{4}
$$

where the numeric parameters are listed in the following table.

The curves nearly match. However a little extra torque is required going uphill and a little less downhill. Also a little more is required to overcome rolling and air resistance at higher speeds. There is also a dip in acceleration at about 60 seconds where the friction brakes were applied. In that case, the torque-based computation did not follow.

The electric motors are geared down to the wheels by a ratio of 9. The torque to the wheels is therefore $9\times$ that at the motors. That means that the motors rotate very fast. At the maximum speed of 145 mph, the motors spin at 16400 rpm.

Figure 12. Acceleration computed from torque.

Accessory power draw

The accessories were turned on one at a time to measure the power draw. The lights, wipers, and heaters were a simple electrical draw. The climate control and front defroster ran the heat pump and consumed much more power. There was also a turn-on transient for the electric motor driving the heat pump. The climate control was set to 70◦F and the outside air temperature was 37◦F.

Figure 13. Power draw of accessories turned on one at a time.

Cumulative data

There are some interesting cumulative data that are recorded. If the total charge and discharge number are accurate, the system is 96% efficient in converting stored energy to released energy. The DC and AC charge numbers indicate I do 87% of my charging at home. I recover about 23% of my energy through regenerative braking. My "mileage" is 3.6 miles/kWh.

Charging

Figure [14](#page-9-0) shows data from a supercharging experiment. On a cold day, I drove from home to a supercharging station in Lynnfield, MA. I used the navigation system to guide me to the supercharger so the car would automatically "precondition" the battery, that is, heat it up. I charged from 41% to 90% of capacity and then drove into work. In response, the battery was heated during preconditioning and in the initial phases of the charge. On the way to work, the battery was cooled.

The battery voltage [V], charge rate [kW], and state of charge [%] are shown in the first three graphs. The discharge rate and rate of charge in miles per hour are found by differentiating the state of charge curve.

Apparently current can be run through the motors without turning them. The motor powers are driven up during the first minutes [31-48] of charging. This significantly raises the stator, inverter, and heat sink temperatures creating heat that is pumped to the battery by the coolant loop in the thermal management system. The result is that the battery gets quite hot by the end of the charge and needs to be cooled down while driving.

The thermal management system can be run in series or parallel mode. In series mode, the battery and power train coolant flows are the same. Heat is pumped from the power train into the battery. In parallel mode, the cooling loops can separate. Tesla's thermal management system is quite complex. Reference [\[6\]](#page-12-6) has a very good analysis of the system put together from patents and other public sources.

The last few graphs show the logic of the thermal management system as it switches into various modes of operation: Series to parallel, radiator bypassed or not, and radiator fan settings. The capture of all these signals was made possible by a dedicated group of hobbyists who reverse-engineered the Tesla CAN bus data stream. All of these signals are subject to change with the model year as the design evolves. Also, frequent software updates can change packet structures and break particular data streams.

I am still curious about all these signals and am still learning. The thermal management system may be as impressive an achievement as electrifying the car in the first place.

Drag race

I wanted to explore the extreme performance of the Tesla Model 3 dual motor. In order to stay legal, I took my Tesla to New England Dragway in Epping, New Hampshire. They have "Street Night" on Wednesdays and Fridays. It was my first time racing and I needed to purchase a Snell-2015-rated helmet and a SFI Spec 3.2A/1 fire jacket.

Figure 15. Me in my Snell-2015-rated helmet and SFI Spec 3.2A/1 fire jacket.

I was never a fan of drag racing, so I knew little of the procedures. It showed in my first race. The quarter-mile track is followed by a 0.45-mile straightaway for slowing down. Unmindful of my high speed, I needed every bit of the straightaway on the first race. In subsequent races, I got on the friction brake right away after the quarter-mile mark.

I ran five races in total. My times are in the table. My reaction times got better with experience but were still quite slow. Note that the reaction times do not count in the 1/4 mile time. Those times are from start-of-roll. Of course, reaction time is very important in match racing with other cars. My times grouped closely showing that they are limited by the performance of the car rather than the driver. I made a [video of drag race 1.](https://youtu.be/bRAjssQpaus)

Zero on the time axis is start of roll. RT is the reaction time. Initially, the Tesla accelerates very quickly at 0.7g due to the 400 ft·lb (550 N·m) of torque. Above 50 mph the motors switch from constant torque to constant power and the car accelerates more slowly under a steady 425 horsepower (317 kW). The run ends at 111.43 mph and 12.392 sec. The rear permanent-magnet motor contributes more than the front induction motor, both to acceleration and to regenerative

Figure 16. Map of New England Dragway.

braking.

Regenerative braking recovered 37% of the charge expended in the run, however, it did not slow the car by much. I had to strongly apply the friction brakes and the end of the run to keep from crashing into the gravel pit. The brake temperatures rise abruptly at the end of the run just before a hard right turn. The 1/4-mile race expended about 1 kWh of energy. The normal highway mileage for the Tesla is 3.6 miles/kWh. The car expended energy at $16\times$ the normal rate during the 1/4-mile.

Summary

Using the [scan my tesla](https://www.scanmytesla.com/) application was a revelation to me. It was very easy to set up and use. It prompted me to research the Tesla Model 3 and I gained insight into the engineering involved in building an electric car. As an electrical engineer, I was very impressed with the choices Tesla made. This project was an exercise in basic mechanics from first-year physics. I had not been there in a while.

Amund Børsand could charge more for the [scan my tesla](https://www.scanmytesla.com/) application in my opinion. He only collects $\sqrt[5]{8.99}$ whereas the total cost of doing these measurements includes the price of the cable (\$29.95) and the OBD-II scanner (\$148.70). The cost of the application is incidental.

Amund thanks the people who contributed to the decoding the Tesla CAN bus codes on his home page: <https://www.scanmytesla.com/>

Biography of the author

Bart Johnson was born in 1956 and raised in Edina, Minnesota. He holds a BEE from the University of Minnesota and a PhD from MIT in electrical engineering. He has held engineering positions at MIT Lincoln Laboratory, AT&T Bell Laboratories, and McDonnell Douglas/Boeing. Since 2000 he has been employed at several Boston-area startups and is currently Director of Electro-Optics Systems Engineering at Axsun Technologies. In his work as a laser engineer at Axsun, he has done theoretical modeling of wavelength-swept lasers for Optical Coherence Tomography (OCT). He is currently helping to develop a swept VCSEL for advanced OCT applications. Bart is the author of the book *Can't Be Trusted* about mental health in aviation. It is available on Amazon.com. Website: <https://cantbetrusted.org/>

Figure 18. Bart in the optics lab.

References

- [1] "Tesla model 3: Exclusive first look at Tesla's new battery pack architecture". https://electrek.co/2017/08/24/teslamodel-3-exclusive-battery-pack-architecture/.
- [2] "Tesla Model 3 dual motor design leaks in latest design studio update". https://electrek.co/2018/01/19/tesla-model-3 dual-motor-design-leak-design-studio-update/.
- [3] "Tesla Turns 4% Motor Efficiency Improvement Into 10% Range Increase". https://insideevs.com/news/348504/tesla-improvesmotor-efficiency-increase-range/.
- [4] "Automobile drag coefficient". https://en.wikipedia.org/ wiki/ Automobile drag coefficient.
- [5] "The Tesla Model 3's Aero Wheel Covers Improve Efficiency Way More Than We Expected". https://www.caranddriver.com/news/a30169467/teslamodel-3s-aero-wheel-covers-efficiency-test/.
- [6] Alex Wray and Kambiz Ebrahimi. Octovalve thermal management control for electric vehicle. *Energies*, 15(17), 2022.